

Towards reproducibility of computational environments for Scientific Experiments using Container-based virtualization

Maximiliano Osorio, Carlos Buil-Aranda, Hernán Vargas UTFSM, Chile

Instituto Milenio de Investigación sobre los Fundamentos de los Datos, Chile

RESEARCHERS

HYPOTHESIS

RESEARCHERS

EXPERIMENTS

RESEARCHERS

EXPERIMENTS RESULTS

REVIEWERS AND RESEARCHERS

RESEARCHERS

REVIEWERS AND RESEARCHERS

REPRODUCIBILITY

DATA

IN SILICICO

IN VIVO/ VITRO

DATA

DATA

IN SILICICO

IN VIVO/ VITRO

In order to reproduce or replicate any d conservation. (King, 1995).

In order to reproduce or replicate any digital artifact we need to properly handle its

To achieve conservation one needs to g with which to:

- Understand
- Evaluate
- Build

... without any additional information from the author (King, 1995).

To achieve conservation one needs to guarantee that sufficient information exists

CONSERVATION TYPES

PHYSICAL CONSERVATION

LOGICAL CONSERVATION

LOGICAL CONSERVATION

gcc-4.8 python-3.6 numpy-1.3 requests-2.9.1

TODAY: ISSUES

Annotation processes are semi-automated, This leaves a lot of work to the scientists.

Logical conservation must be clean. Some annotation process require to install new components.

Physical conservation is nice but it is avoided because the high storage demand of VM images.

NEEDS

Logical and physical conservation are required

Describe the software components and building steps of the environment

Allow to the scientists share the environment and run it

INSPIRATION

- (Santana et. al 2017) define semantic vocabularies that describes the execution environment of scientific workflows, so as to conserve it.
- They define a process for documenting the workflow application and its related management system, as well as their dependencies These tools are not automated.
- They reproduce a workflow execution in different Cloud platforms using Virtual Machines
- They doesn't address physical conservation

DOCKERFILE

FROM ubuntu:16.04 LABEL maintainer="""

```
# Pick up some TF dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
        build-essential \
        curl \
        libfreetype6-dev \
        libhdf5-serial-dev \
       libzmq3-dev \
        pkg-config \
        python \
        python-dev \
        rsync \
        software-properties-common \
       && \
    apt-get clean && \
    rm -rf /var/lib/apt/lists/*
RUN pip --no-cache-dir install \
        Pillow \
        h5py \
        ipykernel \
        jupyter \
        keras applications==1.0.5 \
        keras_preprocessing==1.0.3 \
        matplotlib \
        numpy
```

LABEL maintainer="Craig Citro <craigcitro@google.com>"

require an OS per application, driving higher server efficiencies.

Lightweight: Containers share the machine's OS system kernel and therefore do not

Source: <u>docker.com</u>

 Each Docker image references a list of read-only layers that represent filesystem differences.

FROM ubuntu:16.04

Pick up some TF dependencies RUN apt-get update && apt-get install -y -no-install-recommends \ wget \ gnupg **RUN** DEBIAN FRONTEND=noninteractive apt-get install -y --no-install-recommends pegasus condor

a1886ebc75ae	0 B
783cc95f59fa	547 MB
26f18f2d78f0	30.7 MB
8c16c02c2a6f	101 MB
workflow manager image (pegasus)	

workflow manager image (pegasus)		
	8c16c02c2a6f	101 MB
	26f18f2d78f0	30.7 MB
	783cc95f59fa	547 MB
	a1886ebc75ae	0 B

FROM ubuntu:16.04

Pick up some TF dependencies

RUN apt-get update && apt-get install -y -- no-install-recommends \

wget \

gnupg

RUN DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends pegasus condor

FROM ubuntu:16.04

Pick up some TF dependencies
RUN apt-get update && apt-get install -y -no-install-recommends \

wget \ gnupa

RUN DEDIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends pegasus condor

a1886ebc75ae	0 B	
783cc95f59fa	547 MB	
26f18f2d78f0	30.7 MB	
8c16c02c2a6f	101 MB	
workflow manager image (pegasus)		

To create a new workflow, we need to import the pegasus image. Next, we can install the new software

FROM pegasus RUN pip install numpy

a1886ebc75ae	0 B	
783cc95f59fa	547 MB	
26f18f2d78f0	30.7 MB	
8c16c02c2a6f	101 MB	
workflow manager image (pegasus)		

A NEW WORKFLOW

FROM pegasus RUN pip install numpy

a1886ebc75ae	0 B	
783cc95f59fa	547 MB	
26f18f2d78f0	30.7 MB	
8c16c02c2a6f	101 MB	
workflow manager image (pegasus)		

d116b4ca160a	12.7 N
a1886ebc75ae	
783cc95f59fa	
26f18f2d78f0	
8c16c02c2a6f	
workflow image	

FROM pegasus RUN pip install numpy

a1886ebc75ae	0 B	
783cc95f59fa	547 MB	
26f18f2d78f0	30.7 MB	
8c16c02c2a6f	101 MB	
workflow manager image (pegasus)		

OUR WORK

LOGICAL CONSERVATION

ANNOTATE

LOGICAL CONSERVATION

DOCKERHUB

FROM ubuntu:16.04 LABEL maintainer="""

```
# Pick up some TF dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
        build-essential \
        curl \
        libfreetype6-dev \
        libhdf5-serial-dev \
       libzmq3-dev \
        pkg-config \
        python \
        python-dev \
        rsync \
        software-properties-common \
       && \
    apt-get clean && \
    rm -rf /var/lib/apt/lists/*
RUN pip --no-cache-dir install \
        Pillow \
        h5py \
        ipykernel \
        jupyter \
        keras applications==1.0.5 \
        keras_preprocessing==1.0.3 \
        matplotlib \
        numpy
```

LABEL maintainer="Craig Citro <craigcitro@google.com>"

LOGICAL CONSERVATION

```
build-essential \
curl \
libfreetype6-dev \
libhdf5-serial-dev \
libpng12-dev \
libzmq3-dev \
pkg-config \
python \setminus
python-dev \setminus
```

apt-get install -y --no-install-recommends \

LOGICAL CONSERVATION

```
build-essential \
curl \
libfreetype6-dev \
libhdf5-serial-dev \
libpng12-dev \
libzmq3-dev \
pkg-config \
python \setminus
python-dev \setminus
```

You have 10 installed packages, right?

apt-get install -y --no-install-recommends \

ISSUES

- This command installs 184 packages (we got this information from our approach).
- There is no information of the versions or dependencies.

- We use and extend Clair (by CoreOS).
- Clair describe the software components (name, version) installed by:
 - apt (Debian, Ubuntu)
 - yum (RedHat, Centos, Oracle)
 - apk (Alpine)
- We extend Clair to describe other package managers: conda (any Linux)

- We store the Dockerfile.
- If not there is Dockerfile, we extract t image.

• If not there is Dockerfile, we extract the building steps from the manifest of the

Pegasus

LOGICAL

CONSERVATION

PRESERVATION

LOGICAL **CONSERVATION**

RESULTS

- environment of an experiment using Docker containers
- effort annotating the software components and their dependencies
- images.

A method to conduct logical and physical conservation of the computational

We achieve logical conservation without spending the considerable amount of

We rely the physical conservation on DockerHub and their lightweight Docker

Fundamentos de los datos

WE'LL BE ANSWERING QUESTIONS NOW

