

Towards SWIM Narratives for Sustainable Water Management

Raúl Alejandro Vargas Acosta¹, Luis Garnica Chavira², Natalia Villanueva Rosales¹, Deana Pennington³

¹Department of Computer Science, ³Department of Geology, The University of Texas at El Paso ²Git Gud Consulting SAS

SemSci 2018: Enabling Open Semantic Science

co-located with the 17th International Semantic Web Conference

Monterey, California, USA

10/09/2018

Water Sustainability in the US Southwest

- **Research Fields:** Economy, Hydrology, Climatology, Computer, Environmental, Earth Science, and Civil Engineering.
- User Roles: Farmers, Policy Makers, Citizens, Academics
- Regions: New Mexico, Texas, Chihuahua (MX)
- Institutions: UTEP, NMSU, UNM, UACJ, MTU, TAMU

Source: middleriogrande.org

Sustainable Water through Integrated Modelling Framework (SWIM)

- Expose water sustainability models on the Web.
- Clearly identify the sources and processes used

for data **manipulation** for model consumption.

• Describe the science behind the models.

Sustainable Water through Integrated Modelling Framework (SWIM)

Constantion Customize Constantia	Review and Run (CD) Moder Corpora		
	Water Inflows Policy	Population Technology	. Next a
0 Select a base water supply scenario by clicking on the	mage option.		
Simulated Observed Inflows at San Marcial Gauge	Simulated Observed Inflows + Extended Drought	Moderate Stress Climate Scenario	Big Stress Climate Scenario
Time Range: Uses observed historical inflows from 1994 to 2015, inflow remains static after 2015, i.e. 2015 evenage	Time Range: Uses observed historical inflows from 1094 to 2013. Accends 20 years of synthetisc drought from 2014	Time Range: From 1995 up to 2033	Time Range: From 1995 up to 2033
entrive is repeated up to 2003. Up to 2003.		Description: Simulated annual average flow corresponding to the location of Elephant Butte Reservor.	Description: Appended values of extended drought flows (the observed sequence of annual flows from 2015.2013)
Description: Custom percentage of observed annual everage flow past the pair of gages at San Marcial.	Description: The extended drought is defined as the three year sequence of San Marcial flows at the end of the	Ineed as the three generated by the US Bureau of Reclamation using a at the end of the climate change simulation from the HadGEM2 global	repealed over and over) to the HadGEM2 simulated flows for 1094-2013.
0% 100% 150%	baseline period (2011-2013), repealed over and over for the 20 years following 2013	climate model driven by historical climatic boundary conditions through 2005, and future climate (2006 onward)	

Source: middleriogrande.org

driven by the RCP65 scenario of greenhouse gas concentrations. The simulated climate then is coupled to

Scientific results hard to understand

Semantics behind the data				Urban Price	Use Locations:
~	Year	Use Location ~	Value		Industrial EPMI_u_f = EI Paso Municipal and Industrial
~	1995	LCMI_u_f	\$872.46		Industrial
~	1996	LCMI_u_f	\$889.95		
~	1997	LCMI_u_f	\$906.75	LCMI_u_f E	EPMI_u_f MXMI_u_f
~	1998	LCMI_u_f	\$924.47	1400	
~	1999	LCMI_u_f	\$942.35	1300	
~	2000	LCMI_u_f	\$961.10	1200	
	2001	LCMI_u_f	\$979.88	1000	6
	4	1011	ennn 47	900	
Unit	s: USD/AF		avg: 1230	.3341 300 36 36 36 36 36 36 36 36 36 36 36	5 ³⁵ 15 ¹⁶ 15 ¹⁷ 15 ¹⁸ 15 ¹⁷ 15 ¹⁷ 15 ¹⁷ 15 ¹⁸ 15 ¹⁸ 15 ¹⁸ 15 ¹⁸

Source: middleriogrande.org

Units: USD/AF

SWIM narratives

Customizable human-readable data explanations

*Inspired by Yolanda Gil and Daniel Garijo (2017) [1]. Source: middleriogrande.org

SWIM narratives

~ ~	Year	Vise Location	 Value \$872.46 	Urban water price	Use Locations: LCMI_u_f = Las Cruces Municipal and Industrial EPMI_u_f = EI Paso Municipal and Industrial MXMI_u_f = Ciudad Juarez Municipal and
	Urban Price follows a upward trend with a 65.528% increase of Urban Price by the end year with a peak volume of 1444.0 USD/AF in 2021 and the lowest volume of 872.36 USD/AF in 1995. Units: USD/AF				
Units	s: USD/AF		avg: 1230	.334102564 المحمد	1 45 ¹⁰ 45 ¹¹ 45 ¹¹ 45 ¹¹ 45 ¹⁰ 45 ¹¹ 45 ¹⁰ 45 ¹⁰ 45 ¹⁰ 45 ¹⁰ 45 ¹⁰ 45 ¹⁰

Narrative components

Language	Spanish and English
User role	Farmers, policy makers, water administrators
Focus area	Urban, environmental
Geographical region	El Paso, Texas; Las Cruces, New Mexico; Ciudad Juarez, Mexico
Model element	Model inputs, model outputs, and scenarios
User scenario	Model run document

SWIM narrative generation

Preprocessing

{"varLabel": "Surface Water Storage", "varName": "water_stocks",
"varDescription": "Reservoir water storage", "varUnit": "KAF/yr",
"varValue": [{"res": "Store_res_s", "t": "1996", "value": 2061.5}, {"res": "Store_res_s", "t": "1997", "value":
2213.49}...}

Excerpt of an executed scenario serialized as JSON using SWIM's data model. The response contains metadata and result values for the output variable "water stocks."

Q1. List<Narrative> outputNarrative = mDataStore.createQuery(Narrative.class).filter("element.name", varName).asList();

R1. ~element_label follows a ~adjective_trend trend with a ~percent ~adjective_behaviour by the end year ~constant_year with a peak volume of ~maxValue ~element_unit in ~maxYear and lowest volume of ~minValue ~element_unit in ~minYear.

Query to retrieve narrative template for an output variable and result.

Narratives

Global Average Values

Model outputs compared with outputs from the historical period of 1995-2015

Average Total Inflows

Average annual total inflows in thousands of acre feet

Current Run: 466.9 - Historical Run: 582.86

Water Supply outcome causes a 20% reduction in average inflows to Elephant Butte in comparison to the historical period (1995-2015). Historical averages were 582 KAF/yr and the selected scenario results in 466 KAF/yr average annual inflow.

Units: KAF/yr

Vater Stocks

Reservoir water storage

Project Storage: Store_res_s = Caballo/Elephant Butte

Surface Water Storage follows a downward trend with a 75% reduction by the end year 2033 with a peak volume of 2213 KAF in 1997 and lowest volume of 541 KAF in 2033.

Units: KAF/yr

Summary narrative (a) and single output narrative (b)

Current results (1)

- **Specification** of the narrative components.
- One narrative **template** document per model element (scenario, input or output).
- In-house **ontology** for SWIM specific terms.
- Semantically annotated **narrative schema** formatted in JSON-LD.

Current results (2)

- Stand-alone web service: Natural Language Narrative Generator (NLNG).
- **Data interpretations** through the ingest of individual model elements (single value or time series), target user metadata and baseline model runs.
- Narrative addition to SWIM UI.

Future work

Extension of narrative templates for different roles.

Generalization of SWIM narratives.

Evaluation with stakeholders and scientific team.

Expose SWIM's annotated data as knowledge graphs, e.g., Cayley.

Predefined user preferences through Machine Learning algorithms.

International, Interdisciplinary Research Team

Bill Hargrove Soil and Water Management

Josiah Heyman Anthropologist

Deana Pennington Geoscientist

Alex Mayer Civil Engineering

Frank Ward Economist

Dave Gutzler Climate Change

Sarah Sayles Water Science and Management

Alfredo Granados Soil Science and Agronomy

Luis Garnica Software Engineering

Availability

Project Website:

http://purl.org/swim

SWIM-NLNG Service:

http://purl.org/swim/services/nlng

SWIM Vocabulary (JSON-LD):

http://purl.org/swim/vocab

SWIM Terms (OWL):

http://purl.org/swim/terms

Backend Source Code:

https://github.com/iLink-CyberShARE/SWIM-NLNG

Acknowledgements

Thank you for the contributions of SWIM's modeling team, especially Frank Ward, and Dave Gutzler. This material is based upon work supported by the National Institute of Food and Agriculture, U.S.D.A. Grant# 2015-68007-23130 "Sustainable water resources for irrigated agriculture in a desert river basin facing climate change and competing demands: From characterization to solutions." This work used resources from Cyber-ShARE Center of Excellence, supported by National Science Foundation Grant #HRD-0734825.

References

[1] Towards Automating Data Narratives. In Proceedings of the *22Nd International Conference on Intelligent User Interfaces* (IUI '17), 565–576. DOI:https://doi.org/10.1145/3025171.3025193

Towards SWIM Narratives for Sustainable Water Management

Raúl Alejandro Vargas Acosta¹, Luis Garnica Chavira², Natalia Villanueva Rosales¹, Deana Pennington³

¹Department of Computer Science, ³Department of Geology, The University of Texas at El Paso ²Git Gud Consulting SAS

SemSci 2018: Enabling Open Semantic Science

co-located with the 17th International Semantic Web Conference

Monterey, California, USA

10/09/2018